
________________________________________ 
 
*Corresponding author: Email: nnaemeka.eze@unn.edu.ng; 
 
 
 

 
Journal of Advances in Mathematics and Computer Science 

 
36(3): 132-160, 2021; Article no.JAMCS.67074 
ISSN: 2456-9968 
(Past name: British Journal of Mathematics & Computer Science, Past ISSN: 2231-0851) 

 

_______________________________________________________________________________________________________________________________________ 

 

Principal Component Factor Analysis of Some Development 
Factors in Southern Nigeria and Its Extension to Regression 

Analysis 
 

Nnaemeka Martin Eze1*, Oluchukwu Chukwuemeka Asogwa2  
And Chinonso Michael Eze1 

 
1Department of Statistics, University of Nigeria, Nsukka, Nigeria. 

2Department of Mathematics, Computer Science, Statistics and Informatics, Alex Ekwueme Federal University 
Ndufu-Alike Ikwo, Nigeria. 

 
Authors’ contributions 

 
This work was carried out in collaboration among all authors. The contributions of authors are available 

included in conclusion. All authors read and approved the final manuscript. 
 

Article Information 
 

DOI: 10.9734/JAMCS/2021/v36i330351 
Editor(s): 

(1) Dr. Junjie Chen, University of Texas at Arlington, USA. 
Reviewers: 

(1) Ewa Dacewicz, University of Agriculture in Krakow, Poland. 
(2) Hua Zhang, Wuhan University of Science and Technology, China. 

Complete Peer review History: http://www.sdiarticle4.com/review-history/67074 

 
 
 

Received 27 January 2021 
Accepted 30 March 2021 
Published 24 April 2021 

__________________________________________________________________________________ 
 

Abstract 
 

This study was conducted to evaluate some development factors in Southern Nigeria in order to ascertain 
common factors that explained the interrelationships among them and identify best cities for 
recommendation. A total sample of 250 cities from different states in three geopolitical zones in Southern 
Nigeria was used in this study and 11 development factors were considered. Kaiser-Meyer-Olkin (KMO) of 
(> 0.5) was computed to test the sampling adequacy; Bartlett’s Test of Sphericity (Significant at 0.001) was 
conducted to test whether the correlation between the variables are sufficiently large for factor analysis; 
correlation matrix was computed to confirm the inter-item correlation. In this analysis, principal component 
factor analysis was the factor extraction method. Varimax rotation technique was used for factor rotation. 
The result showed that three new factors with eigenvalues greater than 1 were successfully constructed. The 
three new factors accounted for 71.63% of total variance in the dataset and assigned as the common factors 
influencing sustainable development in Southern Nigeria. The communalities results ranging from 0.32-0.88 
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depicted that factor model was adequate. The results of factor analysis were extended to multiple regression 
analysis. The multiple regression model was fitted using development scores as dependent variable and 
rotated factors as independent variables. The coefficient of determination,��, for the regression model was 
99% and this shows that the model is adequate to evaluate the Southern Nigerian cities. The higher the 
estimated development scores, the better a city. Tolerance and VIF values showed that there was no 
multicollinearity in the regression model. 
 

 
Keywords:  Communality; sustainable development; factor analysis; principal component; multiple regression 

model; varimax rotation. 
 

1 Introduction 
 
In this study, we intend to evaluate some development factors in Southern Nigeria and identify how many 
unobservable factors that influences them. However, we also intend to extend the study to know the best cities 
in Southern Nigeria. Since the second half of the twentieth century, after the international agenda started to 
focus on development, the term development has been used widely and indiscriminately. The term 
‘development’ has been defined in many ways by many researchers. Development is the process of coming into 
existence or creating something new or continuing growth of something so that it becomes more advanced. This 
development needs a physical reality and a state of mind. In the process of development, the interactions 
between social, economic and institutional processes must be continually sustained to meet up with increasing 
future demands in terms of population growth and continuous use of natural, human and material resources [1]. 
According to Seers [2], development is when a country experiences a reduction or elimination of poverty, 
inequality and unemployment. In the view of Owens [3], development is when there is development of people 
(i.e., human development) and not development of things. Israel [4] defined development as a process that 
creates growth, progress, positive change or the addition of physical, economic, environmental, social and 
demographic components. Human Development Report [5] stated that development is a way of improving 
capabilities and opportunities of people so that a good environment can be built for both present and generations 
to come. The major intention of development is to increase the level and quality of life of the citizens, the 
creation or growth of local regional income and creation of employment opportunities, without destroying the 
resources of the environment. Development should be noticeable and useful. It must not happen immediately 
and should include features of quality change and creates conditions for sustainability of that change. Thus, 
sustainability of development in our society is very essential because it brings development expansion and 
makes it more useful for future generation. Sustainable development is a term used as a way of responding to 
global environmental concerns, biophysical issues, fairness, equity and distribution. Brundtland Report also 
known as Our Common Future was the first to come out with the concept of sustainable development in 1987 
and the report stated that a sustainable development must meet the needs of the present and this should not 
prevent the future generations from meeting their own needs [6]. In 2012, the United Nations Conference on 
Sustainable Development met and their agenda were to discuss and build up a set of sustainable development 
goals (SDGs) that would enable the world to achieve sustainable development by 2030 [7]. These SDGs 
include: (a) No Poverty, (b) Zero Hunger, (c) Good Health and well-being, (d) Quality Education, (e) Gender 
Equality, (f) Clean Water and Sanitation, (g) Affordable and Clean Energy, (h) Decent Work and Economic 
Growth, (i) Industry, Innovation and Infrastructure, (j) Reducing Inequality, (k) Sustainable Cities and 
Communities, (l) Responsible Consumption and Production, (m) Climate Action, (n) Life Below Water, (o) Life 
On Land,  (p) Peace, Justice, and Strong Institutions, (q) Partnerships for the Goals.  These SDGs were adopted 
by the United Nations General Assembly in September 2015 as a universal call to action to achieve the 17 
aforementioned goals by 2030 [8].  
 
In regard with this sustainable development, it has been observed that changes in the integrated approach to 
social, economic and environmental issues have not really facilitated the developmental goals in Nigeria and 
some of the problems to Nigeria development are poverty, flooding, ethnicity, environmental pollution, 
corruption, attitudes and lopsided income distribution. Nigeria is one of the African countries that are located on 
the western coast of Africa. The country was colonized by United Kingdom and got her independent on October 
1, 1960. The country is now officially known as the Federal Republic of Nigeria and has mass land of 
approximately 923,768 square kilometers with density of around 212.04 individuals per square kilometers. She 
has over five hundred different ethnic groups and many different languages [9]. Nigeria has six geopolitical 
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zones that feature 36 states with Federal Capital Territory, which is known as Abuja. The six geopolitical zones 
in Nigeria are; North-Central, North-East, North-West, South-East, South-South, and South-West [10]. From 
these six geopolitical zones, one can say that Nigeria is divided into two protectorates; Northern and Southern 
Nigeria Protectorates. 
 
This research focuses on the sustainable development in Southern Nigeria Protectorate using some of the SDGs 
of United Nations [7] as assessment criteria. Southern Nigeria which has a total surface area of approximately 
206,888 square kilometers was created in 1900 by the British government. It was known as British protectorate 
and was officially renamed the Colony and Protectorate of Southern Nigeria in 1906. In 1914, Southern Nigeria 
Protectorate was joined with Northern Nigeria Protectorate to form a single colony of Nigeria [11].  
 
The main purpose of this study is to evaluate some development factors in Southern Nigeria in order to ascertain 
common factors that explained the interrelationships among them and identify best cities to recommend for 
tourism, excursion, holiday and so on. The objectives of this research are as follows: 
 
 To fit exploratory factor analysis model using the following development factors in Southern Nigeria; 

housing, healthcare, crime, transportation, education, arts, recreation, economy, borehole & pipe-borne 
water (i.e. water demand from the sources), energy, and climate (i.e. average temperature) 

 To fit a multiple regression model using rotated factors scores as independent variables and development 
scores (i.e., principal component scores) as dependent variable. This fitted multiple regression model will 
be used to estimate cities development scores which will enable us to identify the best cities to 
recommend for tourism, excursion, holiday, and so on. 

 
2 Literature Review 
 
Several researchers had conducted studies using factor analysis as their method of data analysis such as Sakar et 
al. [12] that studied fruit length, fruit width, fruit height, fruit weight, shell thickness, kernel weight, kernel ratio, 
and filled-firm kernel ratio from 365 Ankara walnut samples using factor analysis. The results showed that three 
out of seven factors have eigenvalues greater than one and were selected for further study. Multiple regression 
analysis was used to extend the study by using factor scores from the three selected factors. The factor scores for 
the three selected factors were used as independent variables in multiple linear regression model for prediction 
of kernel weight. All of the selected factors were found to have significant linear relationships with kernel 
weight and 85.9% of variance in kernel weight was explained by the factors.  
 
Song and Zhang [13] studied the consumer decision making in rural tourism based on factor analysis model. 
They considered 4 indicators which include price factors, market factors, safety factors and personal factors and 
in which these 4 factors consist of 18 secondary indicators. They distributed 600 copies of questionnaires in 
which 564 (94%) were valid. The Kaiser-Meyer-Olkin (KMO) test and Bartlett test were conducted to 
determine whether the data were suitable for factor analysis or not. The result shows that the test value of KMO 
is 0.785, and p-value of Bartlett test is less than 0.05, which illustrates that the collected data were suitable for 
factor analysis. The result from factor analysis showed that food prices, accommodation prices, others 
recommend and local security level are the most important factor that will affect rural tourist decision-making. 
 
Adejumo and Adejumo [1] carried out a research on prospects for achieving sustainable development through 
the millennium development goals in Nigeria. The study looked at some theoretical and practical principles on 
sustainable development, the plan implementation of the world summit on sustainable development and the 
Nigerian case on sustainable development. The study showed that some factors could be identified as obstacles 
to achieving sustainable development in Nigeria and other part of the world and these include; poverty, 
corruption, lack of qualified people to develop and implement alternative technologies, lack of education. They 
suggested that sustainable development could be achieved in Nigeria and in the whole world, if a conscious step 
towards the achievement of the goals of sustainable development were considered as given by World Summit on 
Millennium Development Goals. 
 
Onyeabor and Alimba [14] carried out a study on factor analysis of influence of host-community characteristics 
on ecotourism development in South-East Nigeria. From the study, they found out that host-community 
characteristics influence ecotourism development in South-East Nigeria. Particularly, poor states of socio-



 
 
 
 

Eze et al.; JAMCS, 36(3): 132-160, 2021; Article no.JAMCS.67074 
 
 

 
135 

 

economic infrastructure, inability to maximize ecotourism-induced economic opportunities, socio-political and 
economic exclusion of women and poor sanitary condition of host-community environments constitute 
impediments to ecotourism development in the area and they recommended that governments at state and 
council levels should step up the provision of socio-economic infrastructure in rural areas, particularly in 
ecotourism host-communities, including construction and maintenance of rural roads, supply of water and 
electricity, and spurring telecommunication services providers to provide quality services in host-communities. 
 
Aldahmash et al. [15] conducted a study using factor analysis on the critical success factors (CSFs) of Agile 
Software Development. They used questionnaire on 131 respondents from agile practitioners from more than 28 
countries. A principal component analysis method of factor analysis was used and it was run on 8-question 
questionnaire that explores the importance of the CSFs of agile projects. For each success factor, a question was 
asked base on seven-point options from strongly agree to strongly disagree (Likert scale 1-7). The result 
indicated that the first two components explained 45.77% and 12.83% of the total variance respectively. i.e., the 
two factors (or components) combined explained 58.61% of the total variance and this helped them to 
understand how these success factors are related to each other. This also helped them in planning or improving 
agile training programmes. 
 

3 Data Collection 
 
Data collection is a very vital feature of any research in education and with respect to that, it would be necessary 
to state how data were collected for this research. Thus, the data used in this research were secondary data 
collected from different ministries and agencies in three geopolitical zones in Southern Nigeria. These ministries 
and agencies include: state ministry of housing, National Health Insurance Scheme (NHIS), Law Enforcement 
Agency (Nigeria Police Force were considered), state ministry of transportation, state ministry of education, 
state ministry of tourism, arts & culture, National Bureau of Statistics, state ministry of water resources, Power 
Holding Company of Nigeria (PHCN), and Nigerian Meteorological Agency for Climate. The geopolitical zones 
and states in Southern Nigeria are as follows: South-East:- Abia State, Anambra State, Ebonyi State, Enugu 
State, and Imo State; South-South:- Akwa-Ibom State, Bayelsa State, Cross River State, Delta State, Edo State, 
and Rivers State; South-West:- Ekiti State, Lagos State, Osun State, Ondo State, Ogun State, and Oyo State. 
 
From the aforementioned states, 250 areas or cities were selected using simple random sample technique and 
these include: Abia State:- Aba, Akwete, Arochukwu, Bende, Umuahia, Osisioma, Omoba, Okpuala-Ngwa, 
Oke-Ikpe, Mbalano, Isiala-Oboro, Nkwoagu-Isuochi, Ebe-Ohiafia, and Mgboko. Akwa-Ibom State:-  Afaha 
Ikot Ebak, Afaha Offiong, Eket, Etinan, Eyofin, Ibiaku Ntok Okpo, Ikot Abasi, Ikot Akpa Nkuk,  Ikot Edibon, 
Ikot Ekpene, Ikot Ibritam, Itu, Nto Edino, Odoro-Ikpe, Oko Ita, Oron, Urua Inyang, Urue Offong, Utu Etim 
Ekpo, and Uyo. Anambra State:- Abagana, Aguata, Agulu,  Awka, Atani, Enugu-Ukwu, Igbo-Ukwu, Ihiala, 
Nkpor, Nnewi, Obosi, Ogidi, Okpogho, Onitsha, Otuocha, Ozubulu, and Umunze. Bayelsa State:- Kaiama, 
Nembe, Ogbia, Oporoma, Sagbama, Twon-Brass, and Yenagoa. Cross River state:-  Abuochiche, Akamkpa, 
Akpet-Central, Boje,  Calabar, Effraya, Ikom, Ikot-Nakanda, Itigidi, Ogoja, Obubra, Obudu, Odukpani, 
Okpoma, Sankwala, and Ugep. Delta State:- Aboh, Agbor, Akwukwu-Igbo, Asaba, Bomadi, Burutu, Effurun, 
Issele-Uku, Kwale, Mele, Obiaruku, Oghara, Ogwahi-Uku, Orerokpe, Sapele, Ughelli, and Warri. Ebonyi 
State:- Abakaliki, Afikpo, Effium, Ezillo, Ezzamgbo, Iboko, Ishieke, Isiaka, Isu, Nguzu-Edda, obiozara, 
Onuebonyi-Echara, Onueke, and Ugbodo. Edo State:- Afuze, Agenebode, Auchi, Benin city, Ekpoma, Fugar, 
Idogbo, Igarra, Igueben, Iguobazuwa, Irrua, Okada, Uromi, and Uselu. Enugu State:- Agbani, Aguobu-Owa, 
Amagunze, Awgu, Enugu, Enugu-Ezike, Ikem, Ndeaboh, Nkwo-Nike, Nuskka, Obollo-Afor, Ogbede, Oji-
River, and Udi. Imo State:- Aboh, Afor-Oru, Awo-Idemili, Igbema, Isinweke, Mgbidi, Nkwerre, Nnenasa, 
Nwaorieubi, Oguta, Okigwe, Okwe, Orlu, Owerri, Umuguma, and Umundugba. Lagos State:- Agege, 
Ajegunle, Akodo, Apapa, Badagry, Ebute-Metta, Epe, Festac Town, Ifako, Ikeja, Ikorodu, Ikoyi, Lagos, 
Mushin, Ojota, Oshodi, Shomolu, Somolu, and Surulere. Ogun State:- Abeokuta,  Atan, Ayetoro, Ifo, Ijebu-
Igbo, Ijebu-Ode,  Ilaro, Imeko, Ipokia, Isara, Itori, Ogbere, Ota, Owode, Sango Otta, and Shagamu. Ondo State:- 
Akure, Bolorunduro, Ifon, Igbara-Oke, Igbekebo, Igbokoda, Iju, Ikare, Ile-Oluji, Ita-Ogbolu, Ode-Irele, Oka-
Akoko, Oke-Agbe, Ondo, Ore, and Owo. Osun State:- Apomu, Ede, Gbongan,  Ifon, Ijebu-Jesa, Ikire, Ikire, 
Ikirun, Ila Orangun, Ile-Ife, Ile-Ogbo,  Ilesha, Ilobu, Ipetumodu, Iwo, Oshogbo, and Osu. Oyo State:- Akanran, 
Egbeda, Ibadan,  Igbeti, Igboho, Igbo-Ora, Ikoy-Ile, Iresa-Adu, Iseyin, Iwere-Ile, Iyana-Ofa, Kishi, Moniya, 
Ogbomosho, Oyo, and Shaki. River State:- Abonnema,  Afam, Ahoada, Akinima, Bonny, Bori, Buguma, 
Degema, Emuoha, Isiokpo, Ogu, Okrika, Omoku, Opobo, Port Harcourt, Rumuodomaya, and Saakpenwa. 
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In regard with this data collection, an extensive review was done on development factors that Nigeria uses to 
develop her states, the following development factors were selected; Housing, Healthcare, Crime, 
Transportation, Education, Arts, Recreation, Economy, Borehole & Pipe-borne Water, Energy, and Climate. 
Moreover, in determining the outcomes of this research, a total of 2,750 data samples were collected for the 
analysis (i.e., 250 cases of cities by 11 development factors). The data were analyzed using factor analysis and 
multiple regression analysis with the help of R version 4.0.3.  
 

4 Research Methodology 
 

4.1 Data screenig 
 
After the collection of data for conducting factor analysis, one should screen the data for the following 
assumptions before proceeding to factor analysis:  
 
4.1.1 Interval data 
 
The data use for factor analysis are usually performed on interval (continuous) or ordinal variables. Sometimes 
categorical and dichotomous variables may be considered [16].  
 
4.1.2 Adequate sample size 
 
It is assumed that the sample size should be large, that is, the case must be greater than the factor. The adequacy 
of sample size can be checked using Kaiser-Meyer-Olkin (KMO) statistic. Kaiser [17] introduced a Measure of 
Sampling Adequacy (MSA) which was later modified by Kaiser and Rice [18].  The KMO measure of sampling 
adequacy is a statistic use to test if the sample size is big enough for factor analysis. It ranges from 0 to 1. The 
KMO with more than 0.50 should be sufficient for factor analysis [19-21]. The maximum value of KMO is 1 
and its value of 0.90 is considered as ‘Excellent’, 0.80 is ‘good’, 0.70 is ‘moderate’ and 0.60 is ‘poor’ [22,23]  
The KMO test statistic as stated by Norusis [24] is 
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∑ ∑ ���
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���

�
���

�∑ ∑ ���
��

���
�
��� � 	∑ ∑ ���

��
�� �
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�� � �

																																																																																																																								(1) 

 
Where ���  is the correlation coefficient between ith and jth of the original variables, ���  is the partial correlation 
(anti-image) correlation coefficient 
 
4.1.3 Linearity 
 
The variables use in factor analysis are based on linearity assumption, that is they should be linearly related to 
each other or moderately correlated otherwise the number of factors will be almost the same as the number of 
original variables and when this happens, the purpose of factor analysis has been defeated [25]. Non-linear 
variables can also be used only when they have been transformed into linear variables using any transform 
method. This assumption can be checked by looking at scatterplots of pairs of variables or pairwise correlation 
method such as Pearson correlation method. One can also use Bartlett’s test of sphericity to confirm if 
correlation exists between variables. Bartlett’s test of sphericity tests the null hypothesis that the original 
correlation matrix is an identity matrix, that is, no correlation between the original variables or that the variables 
are orthogonal and therefore unsuitable for structure detection if null hypothesis is rejected. Bartlett’s test is 
valid for large samples (N>150) [21].  
 
Bartlett’s test of sphericity as proposed by Bartlet [26] is given as     
                        

    �� = 	− �(� − 1)− 	
(�� ��)

�
�.���(|�|)																																																																																																									(2) 

 
Where n is the number of observations, k is the number of variables, and R is the correlation matrix of the data 
while |�| is the determinant of R. Bartlett’s ��  is asymptotically �� − distributed with degrees of freedom 
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In this study, Pearson correlation r will be used to check this linearity assumption. For the Pearson correlation r, 
both variables should be normally distributed. The value of the correlation coefficient varies between -1 and +1. 
A value of ±1 indicates a perfect degree of association between the two variables. As the correlation coefficient 
value goes towards 0, the relationship between the two variables will be weaker [27, 28].   
 
Pearson correlation (�) is given by 
 

��� =
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Where ��� is the Pearson r correlation coefficient between x and y; n is the number of observations, �� is the 

value of � for ��� observation and �� is the value of � for ��� observation. 
 
4.1.4 No Outlier 
 
There should be no outlier in the data that will be used for factor analysis. This can be examined by using any 
normality test.  
 
Note that when there is a violation of this assumption, a method of factor extraction known as “Principal Axis 
Factor” or “Principal Component method of factor extraction” should be considered [16].  
 
In this research, Shapiro-Wilk (SW) test will be used to check the normality of the observations. The previous 
studies showed that, for all sample sizes, Shapiro-Wilk (SW) test is the most powerful test for normality [29, 30, 
31]. 
 
According to Normadiah and Yap [32], given an ordered random sample, �� <	�� < ⋯ < ��, the original 
Shapiro-Wilk (SW) test statistic as stated by Shapiro [33] is defined as,  
 

� = 	
(∑ ����

�
��� )�

∑ (�� − �	)��
���

																																																																																																																																														(4) 

 

Where ��  is the ���  order statistic, �  is the sample mean, �� = (��,⋯ , ��)= 	
�����

��������
�/�  and                        

� = 	(��,⋯ ,��)
�  are the expected values of the order statistics of independent and identically distributed 

random variables sampled from the standard normal distribution and � is the covariance matrix of those order 
statistics. The value of  � lies between zero and one. Small values of � lead to the rejection of normality 
whereas a value that is close to one or exactly one indicates normality of the data. The null hypothesis of 
Shapiro’s test is that the population is distributed normally.  
 
4.1.5 No perfect multicollinearity  
 
There should not be perfect multicollinearity between the variables use for factor analysis because factor 
analysis is an interdependency technique. Multicollinearity occurs when independent variables in a model are 
correlated.  In some analysis, this kind of correlation is a problem because independent variables should be 
independent, i.e., there should be weak or no relationship among themselves. In other words, if the degree of 
correlation among independent variables is high enough, it can cause problem(s) when a model is fitted and 
when interpreting the result(s).  For instance, from regression analysis perspective, if there is presence of 
multicollinearity, regression estimates will be unstable and have high standard errors. To check if there is 
multicollinearity between variables, one can use determinant score. As a rule of thumb, determinant score of 
0.0001 indicates that there is no multicollinearity and Haitovsky’s test is use to test if the determinant score is 
significantly different from zero which indicates an absence of multicollinearity [34,16]. In addition, a 
researcher can also use Tolerance method or Variance Inflation Factor (VIF) method to check this 
multicollinearity. Tolerance is used as an indicator of multicollinearity. The high value of tolerance is an 
indication that there is no multicollinearity in the model while the low value of tolerance is known to affect 
adversely the results associated with the model. A value of 0.10 is recommended as the minimum value of 
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tolerance [35]. A recommended minimum value as high as 0.20 has also been suggested [36]. Other researchers 
suggested tolerance minimum value of 0.25 [37]. 
 

��������� = 1 − ��
�																																																																																																																																													(5)  

 
Where ��

� is the coefficient of determination of kth predictor and it is obtained by regressing the kth predictor 
(i.e., independent variable of interest) onto the remaining independent variables included in the model. 
 
Variance Inflation Factor (VIF) is the reciprocal of tolerance. It identifies correlation between independent 
variables and the strength of that correlation. The minimum value of VIF is 1 and it has no upper limit. VIF 
value between 1 and 4 indicates that there is no correlation between this independent variable and any other 
variable and it suggests absence of multicollinearity, VIF value between 5 and 9 indicates that there is a 
moderate correlation, but it is not sever enough to cause problem. VIF value more than 10 is said to be highly 
collinear and it indicates critical levels and causes problem [38-42].  
 

��� =
�

����
�																																																																																																																																																														(6)	                                                                                                                             

 
Where ��

� is the coefficient of determination of kth predictor order. 
 
In other to solve the problem of multicollinearity, the following potential solutions may be considered: 
 
 Remove some of the highly correlated independent variables. 
 Linearly combine the independent variables, such as adding them together. 
 Perform an analysis designed for highly correlated variables, such as principal components analysis or 

partial least squares regression. 
 
4.1.6 Homoscedasticity 
 
The assumption of homoscedasticity (constant variance) between variables is not necessary when performing 
factor analysis. The reason is because factor analysis is a linear function of measured variables and 
homogeneous samples lower the variance and factor loadings [43].  
 

4.2 Factor model 
 
There are number of factor extraction methods that are use in factor analysis, such as, principal component (PC), 
maximum likelihood, principal axis factoring (PAF), image factor analysis, and canonical factor analysis       
[44-46]. In this study, principal component (PC) of factor analysis method will be considered. As the name 
suggests, this method uses the method used to carry out a principal components analysis. The results of this 
method are not actually the principal components but factor loadings although the loadings for the mth factor 
will be proportional to the coefficients of the mth Principal component.  This method is mostly used when the 
observed data violate the assumption of multivariate normality and also used to eliminate multicollinearity. 
Generally, there is no assumption of normality in PCA method but the data should be linearly weakly related to 
avoid multicollinearity. The idea of PCA is just decomposing the variation in a p-dimensional dataset into 
orthogonal components that are ordered according to amount of variance explained [47, 48]. Using PCA 
method, the original data are reconstructed in order to provide a unique solution. This method provides total 
variance among the variables; therefore, making it possible to generate the same number of factors as the 
number of the original variables. Although the PCA method of factor analysis generates the same number of 
factors as the number of the original variables but note that not all these factors will meet the criteria for 
retention (see Number of Factors in 4.3 of Section 4). The purpose of factor analysis is to represent each of the 
original variables as a linear combination of a smaller set of common factors plus a factor unique.  
 
According to Johnson and Wichern [49], factor analysis model can be written algebraically as follows: 
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Where 

��(� = 1, 2,⋯ , �) is the observable trait i, i.e., the ith original variable which is the data from each 
subject. 
��(� = 1, 2,⋯ , �) is the mean of the ith original variable which is independent of the jth factor. 
���(� = 1, 2,⋯ , �	���	� = 1, 2,⋯ ,�) is the coefficient of the jth factor in the ith original variable. They 

are called factor loadings. 
��(� = 1, 2,⋯ ,�) is the common factor. 

��(� = 1, 2,⋯ , �) is the unique factor associated with the ith original variable. They are called specific 
error terms.       

       
The estimator for the factor loadings is given by 
 

 ���� = �̂������																																																																																																																																																													(8) 

 

Where �̂�� is the estimated eigenvector of the ith variable in the jth principal components and ��� is the estimated 
eigenvalue of the jth principal components. 
 
Note that this method of estimating factor loadings is known as principal component method. The estimated 
eigenvectors �̂��  are the coefficients of principal components. 
 
Moreover, the estimated principal components model using standardized data is given by 
 

��� = �̂���� + �̂���� + ⋯ + �̂����

��� = �̂���� + �̂���� + ⋯ + �̂����
⋮
���

																													⋮
= �̂���� + �̂���� + ⋯ + �̂����

																																																																																												(9) 

 

Where �̂�� is the estimated eigenvector for ith variable in jth principal components and  ��� =
�����̅�

��
. Where ��� is 

the standardized data for ith sample unit in jth variable, ��� is the original data for ith sample unit in jth variable, �̅� 

is the sample mean for jth variable and �� is the sample standard deviation for jth variable. 

 
To compute eigenvalues and eigenvectors, one can use variance-covariance matrix � if the variables of interest 
have the same measurement units or one can use correlation matrix R if the variables have different 
measurement units and also if we want each variable to be given equal weight in the analysis. It is always 
advisable to use correlation matrix R in order to assign equal weight to all the variables. If correlation matrix R 
is used in the computation of eigenvalues and eigenvectors, we said that the data have been standardized. 
 
The eigenvalues and eigenvectors for the correlation matrix are obtained using the following: 
 
For eigenvalue:  
 

|� − ��|= 0																																																																																																																																																			(10) 
 
The eigenvalues obtained should be arranged in descending order i.e., λ� ≥	λ� ≥ ⋯	≥	λ� before computing 

for eigenvector. 
 

For eigenvector:  
 

(� − ��)� = 0																																																																																																																																																																		(11) 
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Where R is the correlation matrix of the original variables, I is the unit matrix, λ is the characteristic root 
(eigenvalue), and coefficient of X is the eigenvector.  

 
4.3 Number of factors 
 
In factor analysis, it has been known that there are several methods for estimating common factors and each of 
these methods generates a certain number of common factors. However, not all these common factors will be 
retained prior to rotation of the factors. There are several criteria which have been proposed for determining the 
number of common factors to be retained. Unfortunately, various criterion rules used by researchers often lead 
to different solutions [50, 51]. 
 
4.3.1 Kaiser criterion  
 
Kaiser suggested that the number of eigenvalues of the correlation matrix that is greater than 1 should given an 
appropriate number of common factors. Eigenvalue for a given common factor is defined as the measurement of 
the variance in the entire variable which is accounted for by that particular given common factor. Thus, if a 
factor has a low eigenvalue its contribution to the variable can be ignored [52]. Jollife [53, 54] criticized 
Kaiser’s idea by proposing a cutoff value of eigenvalues to be 0.7 when correlation matrices are analyzed. 
Jollife suggested that Kaiser’s proposal for cutoff point is too large especially when non eigenvalues is up to 1. 
Some researchers suggested that if the largest eigenvalue is close to one, then holding to a cutoff of 1 may cause 
useful factors to be dropped but if there are too many eigenvalues greater than 1, then those that are close to 1 
may be dropped. 
 
4.3.2 Scree plot criterion 
 
One can also use scree plot criterion which was proposed by Cattell [55] to determine the number of common 
factors to retain. This criterion may cause many researchers to analyze the same data with different results. It 

plots eigenvalues �λ��� against the number of components (i). The eigenvalues drop as one moves towards right 
on components (x-axis) and one should cutoff at the point it starts to curve. Cattell said that all further 
components after the curve point provides less information for the factors and they should be ignored. 
 
4.3.3 Variance explained criterion 
 
Some researchers use cumulative proportion of eigenvalues to determine the number of common factors to be 
retained. The cumulative percentage explained is obtained by adding the successive proportions of 
eigenvalue/variations explained by a given factor. In most cases, the required cutoff point is pre-specified, that 
is, how much of the variation to be explained is pre-determined. For instance, a researcher might state that s/he 
would be satisfied if s/he could explain 50% or 60% or 70% and so on of the variation. So, through doing this, a 
researcher would select the eigenvalues necessary until s/he gets up to his/her pre-specified cutoff percentage. 
 

4.4 Communality 
 
Communality is defined as the proportion of variation in a particular variable that is explained by the selected 
number of common factors. In other words, communality is the sum of squared loadings for a particular 
variable. It ranges from 0 to 1. One can think of this value as multiple �� value for regression models predicting 
the variables of interest from a certain number of factors. A variable without any unique variance at all, i.e., one 
with explained variance that is 100% as a result of other variables has a communality of 1 while a variable with 
variance that is completely unexplained by any other variables has a communality of 0 [56, 57]. 
 
Communality is given by  
 

ℎ��
� = �����

�

�

���

																																																																																																																																																												(12) 
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Where,  
 

ℎ� is the communality of the ith variable. 
��� is the loading (or correlation) between jth common factor and ith variable. 

 

4.5 Specific variance and error 
 
Specific error (Ψ) is the unique factor associated with any particular original variable which is not explained by 
common factors. If the data are standardized, the variance for the standardized data is equal to 1. These specific 
errors (variances) are computed by subtracting the communality from the variance.  
 
That is, 
 

 ���(��)= ∑ ����
��

��� + ���(��) 

���(��)= (���
� + ���

� +	⋯+ ���
� )+	Ψ� 

Since	���(��)= 1  
 
1 = �������������+ ��������	��������� 
 

1 = �ℎ��
�

�

���

+Ψ� 

Ψ� = 1 − �ℎ��
�

�

���

																																																																																																																																																					(13) 

 
This specific variances (Ψ) can also be estimated using variance-covariance matrix � = ��′ + 	Ψ. This is the 
matrix of factor loadings times its transpose, plus a diagonal matrix containing the specific variances. Johnson 
and Wichern [49] stated that the estimated specific variances are provided by the diagonal elements of the 
matrix � − ��′  
 
 

Ψ = 	�

Ψ� 0 ⋯ 0
0 Ψ� ⋯ 0

⋮
0

⋮
0

⋱ ⋮
Ψ�

�																																																																																																																																	(14) 

 

4.6 Complexity 
 
Complexity (Ƈ		) is another statistic that examines the number of factors on which a variable has moderate or 
high loadings [58]. The complexity of all the variables is greater than or equal to 1. This complexity is reduced 
by carrying out rotational computation on factors, that is, by rotating factors. 
 
Complexity is given by   
 

Ƈ�� = 	
�∑ ����

��
��� �

�

∑ ����
��

���

																																																																																																																																																			(15) 

 
 
Where,  
 

Ƈ� is the complexity of the ith variable. 
�� is the loading (or correlation) between jth common factor and ith variable. 
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4.7 Factor rotation 
 
After obtaining number of initial factor loadings using any of the criteria for determining number of factors to 
be retained, the next is to interpret the factors and their loadings. The interpretation of factors is easy to be done 
when factors are rotated [15]. There are two types of factor rotation methods, namely; orthogonal rotation 
method and Oblique rotation method. In orthogonal rotation method, the rotated factors remain uncorrelated 
while in oblique rotation method, the rotated factors are correlated. Both the orthogonal and oblique rotation 
method has different types of rotation techniques. The most common orthogonal method is called varimax 
rotation technique. It has been known that varimax rotation technique illustrates the extracted components 
clearer and easier for interpretation. It minimizes the number of variables that have high loadings on each factor 
and works to make small loadings even smaller [59]. This varimax rotation technique will be applied in this 
research work. According to Mohamad et al. [23], the varimax factors values which are greater than 0.75 (> 
0.75) is considered as strong, the values range from 0.50 - 0.75 (0.50 ≤ factor loading ≤ 0.75) is considered as 
moderate and the values range from 0.30 - 0.49 (0.30 ≤ factor loading ≤ 0.49) is considered as weak factor 
loadings. Varimax rotation technique involves scaling the common factor loadings by dividing them by the 
corresponding communality as follows: 
 

����
∗ =

����

ℎ��
																																																																																																																																																																				(16) 

 
Where, 
 

����
∗  is the quantity maximizes by varimax rotation. 

��� is the initial factor loadings (or correlation) between jth common factor and ith variable. 

ℎ� is the communality of ith variable. 
 
Hence, varimax rotation technique is given as 
 

� =
1

�
��������

∗ �
�

�

���

−
1

�
�������

∗ �
�

�

���

��

�

���

																																																																																																								(17) 

 

4.8 Factor score and multiple linear regression analysis  
   
In the extension of factor analysis to regression analysis, factor score values obtained from factor coefficients of 
the selected common factors are used as independent variables. Factor scores can be computed such that they 
are nearly uncorrelated or orthogonal. It can be regarded as a variable explaining how much a sample unit would 
score on a factor. The use of these factor score values in multiple regression analysis helps to solve the problem 
of multicollinearity, therefore, helping a researcher to make a good prediction [35]. Although, it may even be of 
interest of a researcher to use these factor score values as the dependent variables in a future analysis [12]. There 
are several methods that have been proposed for estimating factor scores from the data, namely; ordinary least 
squares, weighted least squares and regression method [60, 61]. The method for estimating these factor scores 
depends on the method used to obtain common factor loadings as mentioned in this section (see Factor Model in 
4.2 of Section 4). In regard with factor scores method, weighted least squares method will be considered in this 
research. In this method squared residuals are divided by the specific variances and this gives more weight to 
variables that have low specific variances. The factor model fits the data best for variables with low specific 
variances and these variables should give more information regarding the true values for the specific factors 
[62]. 
 
Given the factor model: �� = � + ��� + �� 
 
We want to find �� that minimizes     
                                                                                                                              

�
���
�

Ψ�

�

���

		= �
���� − �� − ����� − ����� − ⋯− ������

�

Ψ

�

���

= (�� − � − ���)
′Ψ��(�� − � − ���) 
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Where Ψ is the diagonal matrix whose diagonal elements are equal to the specific variances. 
 

Hence, ��� = ��′Ψ����
��
�′Ψ��(�� − �)= ��′Ψ����

��
�′Ψ��(�� − �)																																																						(18) 

  
After obtaining factor scores, because of standardization, a factor score of zero (0) represents an average 
contribution of that factor to a specific observation or sample. A factor score of 1.0 indicates that the 
contribution of that factor is one standard deviation higher than the average while a factor score of -1.0 indicates 
one standard deviation lower than the average [63]. 
 
Having computed factor score values and using them as independent variables, the general multiple regression 
model is given by 
 

�� = � + ������ + ������ + ������ + ⋯+ �����	� + ��																																																																										(19) 
 
Where	��(i= 1, 2,⋯ , n)	is	the	dependent	varible	for	ith	unit, ����, ����, ����,⋯ , ���	�	(� = 1, 2, 3,⋯ , �) are 
the factor scores for ith unit on m number of factor scores (i.e., m is the number of factor scores (FS) we 
considered), � is regression constant (it is the value of intercept and its value is zero); ��, 	��, ��, ⋯ , �� are 
regression coefficients of factor scores (��) on m number of factor scores. �� is factor score and � is the error 
term. Regression coefficients are tested with a t-statistic. The coefficient of determination, ��, is used as an 
indicator of the quality of the regression [64]. 
 
 In regard to the multiple regression model in equation (19), a researcher can estimate dependent variable ��  
using principal components model in equation (9) if there is no dependent variable ��.  In principal components 
analysis, we create new variables that are linear combinations of the observed variables but in factor analysis, 
we model the observed variables as linear functions of the factors. Therefore, in practice, principal component 
model (��) is used to create new variable that serves as dependent variable instead of factor model. This 
principal components (��) in equation (9) is a function of observed random data, and so the data create from it 
are also random. Moreover, the first principal component will be used to create dependent variable for our study 
because it always explains maximum variance among all linear combinations. It accounts for as much variation 
in the data as possible. 
 
This first principal component is given by 

 

���� = �̂����� + �̂����� + ⋯ + �̂�����.																																																																																								(20) 
 

Where ����	(i= 1, 2,⋯ , n)	 is the first principal component for ith unit, �̂��, 	�̂��,⋯ , �̂��  are the estimated 

eigenvectors for the first principal component on p number of standardized variables and  ���, ���,⋯ , ���	(� =

1, 2,⋯ , �) are the standardized data for ith sample unit on p number of standardized variables. 
 
In addition, a researcher may also have interest in using factor scores (FS) as dependent variables. In this case, 
standardized variables ��� will now be the independent variables. Since the first factor score (FS) is computed 

through first eignevalue which always explains maximum variance among other eigenvalues, it is more 
acceptable to use as dependent variable. In regard to this, the multiple regression model is given as 
 

���� = � + ����� + ����� + ����� +⋯+ ����� + ��																																																																		(21) 
 
Where ����	(i= 1, 2,⋯ , n)	 is the first factor scores for ith unit, ��, ��, ��,⋯ , ��	 are the regression coefficients 
on k number of standardized variables, ���, ���,⋯ , ���	(� = 1, 2,⋯ , �) are the standardized data for ith sample 
unit on p number of standardized variables. 
 

5 Results and Discussion 
 
In this section, we presented results and discussion from data analysis. The results were divided into two which 
are (a) factor analysis and (b) multiple linear regression analysis. With regard to factor analysis, we first used 
Kaiser-Meyer-Olkin (KMO) test and Bartlett test to determine whether the data were suitable for factor analysis 
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or not, as showed in Table 1. The statistical tool used to obtain KMO and Bartlett tests was SPSS version 23. 
The result showed that the test value of KMO was 0.777 which exceeded the factor analysis validity threshold 
value of 0.5 that was recommended [19-22]. The result of KMO was supported by Bartlett’s test of Sphericity 
which was significant (Chi-square = 1668.376; P<0.001 i.e., P-value of Bartlett test is less than 0.05). The KMO 
result indicates that the sample size is large enough for factor analysis and Bartlett’s test of Sphericity result 
shows that the original correlation matrix is not an identity matrix, therefore, the data are suitable for factor 
analysis, that is, the variables are correlated highly enough to provide a reasonable basis for factor analysis [26] 
(see Adequate Sample Size and Linearity in Section 4). 
 

Table 1. The result of KMO statistical test and Bartlett's test 
 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.777 
Bartlett's Test of Sphericity Approx. Chi-Square 1668.376 

df 55 
Sig. 0.000 

 
In addition to investigate further that Bartlett’s test of Sphericity was significant (P<0.001) and also to check if 
multicollinearity exists among the variables, we computed a correlation matrix (Table 2). From the result in 
Table 2, which was obtained using R version 4.0.3, we can see that there is correlation between each pair of 
variables (i.e., the considered development factors). In this Table 2, the faint darkred and blue circles indicate 
weak correlation values whereas the bold darkred and blue circles indicate strong correlation values. Since the 
correlations between each pair of the variables were significant (P<0.01 or P<0.05); the correlation coefficients 
may be factorable. Again, there is high correlation between some variables and this might be resulting in 
multicollinearity in the model. In other to solve this problem of multicollinearity, principal components analysis 
was conducted (see Multicollinearity in 4.1.5. of Section 4). 
 

Table 2. Pearson correlation coefficients among all development factors 
 

 
 
The normality of data was examined by plotting histogram (Fig. 1). This normality test enabled us to examine if 
there is an outlier in the sample.  
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Fig. 1. Histogram plot 
 
The histogram plot in Fig. 1 showed that the data from each variable were not normally distributed and this 
means that there is an outlier in the samples. Since graph can be interpreted or viewed in different ways, the 
numerical method of normality test can be used to confirm the normality test of the sample observations. In this 
case, Shapiro-Wilk normality test was applied for the data (see Table 3). As can be seen from column 4 of  
Table 3, the p-value of each variable is less than 0.001 (i.e., p<0.001) and this indicates that the data were not 
normally distributed. 

Table 3. Shapiro-wilk test of normality 
 

Test Variable Statistic p-value Normality 
Shapiro-Wilk Housing 0.9624  <0.001      NO     
Shapiro-Wilk HealthCare 0.8971  <0.001      NO     
Shapiro-Wilk Crime 0.4828  <0.001      NO     
Shapiro-Wilk Transportation 0.9488  <0.001      NO     
Shapiro-Wilk Education 0.8485  <0.001      NO     
Shapiro-Wilk Arts 0.5702  <0.001      NO     
Shapiro-Wilk Recreation 0.845  <0.001      NO     
Shapiro-Wilk Economy 0.8847  <0.001      NO     
Shapiro-Wilk Borehole Water 0.7494  <0.001      NO     
Shapiro-Wilk Energy 0.6113  <0.001      NO     
Shapiro-Wilk Climate 0.745  <0.001      NO     

 

5.1 Factor analysis result 
 
Having screened the data for factor analysis and found out that they were appropriate (see Table 1); factor 
analysis was performed using principal component analysis (PCA) method. The PCA method of factor analysis 
was used to extract the factors due to the violation in the assumption of normality (see Table 3) and also to solve 
multicollinearity problems (see Table 2). The extraction of the factors was done by computing eigenvalues of 
the correlation matrix in Table 2. However, correlation matrix was used because we want each variable to be 
given equal weight in the analysis. In practice, eigenvalues that are greater than 1 are mostly considered [52]. 
From the result in Table 4, the first three components have eigenvalues greater than 1 and this implies that the 
first three common factors are required. Also, the percentage of variance explained by each of the components 
as well as the cumulative percentage of variance explained is provided in column 3 & 4 of this Table 4. The 
proportion of variance in the set of variables accounted for by a factor is the sum of square loading (i.e., sum of 
eigenvalues) for the factor divided by the number of variables. The percentage of variance is the multiplication 
of the proportion of variance by 100. For instance, the proportion of variance explained by the first component 
is (4.7845/11.0001) = 0.43 whereas the percentage of variance explained by the first component is 
(0.434951x100) = 43.49%. The second component accounted for 15.24% and the third component accounted for 
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12.89%. The three selected components explained 71.63% of the total variation of variables in this analysis. 
Moreover, we obtained variance rotation using varimax rotation method and because varimax rotation is 
orthogonal, the cumulative variance proportion of the rotated three components together accounted for 
(7.88/11.0001) = 0.72 and its cumulative variance percentage is (0.71629 x 100) = 71.63%. The cumulative 
variance percentage can also be used to determine the number of common factors to compute. The cumulative 
variance percentage shows the amount of variances that components explain. The numbers of components that 
explain an acceptable level of variance are retained and the acceptable level depends on the application. In our 
result, the first three components explained 71.63% of the total variation. This is an acceptably large percentage 
(see Table 4). 
 

Table 4. Total eigenvalues and the total variance explained 
 

Initial sums of squared loadings Rotation sums of squared loadings 
 Component Eigenvalue Variance 

Percent 
Cumulative 
Variance Percent 

Eigenvalue Variance 
Percent 

Cumulative 
Variance 
Percent 

Component 1  4.7845 43.4951 43.4951 3.529 32.081 32.081 
Component 2  1.6769 15.2444 58.7395 2.702 24.560 56.641 
Component 3  1.4179 12.8899 71.6295 1.649 14.989 71.629 
Component 4  0.8435 7.6682 79.2976    
Component 5  0.6576 5.9777 85.2754    
Component 6  0.5253 4.7753 90.0506    
Component 7  0.3453 3.1393 93.1900    
Component 8  0.2491 2.2647 95.4547    
Component 9  0.2193 1.9939 97.4486    
Component 10  0.1883 1.7114 99.1600    
Component 11  0.0924 0.8400 100.0    
Total     11.0001   11.0001   
 
Moreover, the scree plot which was proposed by Cattell [55] (see Number of Factors in 4.3 of Section 4) can be 
used to investigate further if the first three eigenvalues should be used to obtain the required common factors. 
As shown in Fig. 2, the abscissa represents the number of components ordered from largest to the smallest and 
the vertical axis represents the variance (i.e., eigenvalues) percentage explained. The number of components is a 
unique number to identify each eigenvalue during analysis and this Fig. 2 displays only the eigenvalues that the 
percentage is greater than or equal to 1. This indicates that any eigenvalue that the percentage is less than 1 is 
very negligible to contribute in analysis (see Table 4). The red dashed line on the scree plot indicates the cutoff 
point. The eigenvalues greater than or equal to 1 are above the red dashed line while the eigenvalues less than 1 
are below the line. 
 

 
 

Fig. 2. Scree plot for initial eigenvalues 
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Having decided the number of factors to be extracted, it is the time to interpret the factors and their loadings. 
Since PCA method of factor analysis had been considered in this study, the first-stage was to compute PCA 
using equation (9) and its results were used to obtain the initial required common factors in Table 5 (see factor 
model in 4.2 of section 4). 

 
Table 5 presented initial factor loadings, communalities, specific variances and complexities. These initial factor 
loadings were rotated using varimax rotation technique (see factor rotation in 4.7 of section 4). The application 
of the varimax rotation technique was to find factors that are easier to interpret (see Table 6 for the interpretation 
of factor loadings). The communalities are the proportion of variance that each variable has in common with 
other variables. If communality of a variable is high, it means that the extracted factors explained a big 
proportion of the variables variance. The range of communality values from 0.3 – 1 indicates that the data are 
conformable to factor analysis. As can see from column 3 of Table 5, all the communalities ranging from 0.31 – 
0.88 depicted that factor model is a good model (see communality in 4.4 of section 4). Column 4 shows specific 
variance which is the variance that is specific to a particular variable, that is, variance explained by a particular 
variable. Complexities in column 5 examine the number of factors on which a variable has moderate or high 
loadings. This complexity is reduced by carrying out rotational computation on factors, that is, by rotating 
factors (see complexity in 4.6 of section 4).  

 
Table 5. Initial common factor loadings matrix and its communality, specific variance and complexity 

 

Variable 

Initial factor (F) loadings ����� Communalities 
����

�� 
Specific variances 
(��) 

Complexities 

�Ƈ��� F1 F2 F3 
Housing -0.7256 0.3361 0.2536 0.7037 0.2963 1.6841 
HealthCare 0.7010 0.5481 0.2930 0.8776 0.1224 2.2715 
Crime 0.4299 0.3339 0.1352 0.3146 0.6854 2.1092 
Transportation -0.7322 0.3562 0.2614 0.7314 0.2686 1.7355 
Education 0.8793 0.2017 -0.0020 0.8138 0.1862 1.1049 
Arts -0.4391 0.6319 0.4792 0.8217 0.1783 2.7083 
Recreation 0.8934 0.1600 -0.0250 0.8245 0.1755 1.0657 
Economy 0.7081 0.2681 -0.0438 0.5752 0.4248 1.2894 
Borehole Water -0.4982 0.3720 -0.4027 0.5488 0.4512 2.8129 
Energy -0.2207 -0.5266 0.7398 0.8733 0.1267 2.0133 
Climate -0.6951 0.2684 -0.4893 0.7946 0.2054 2.1336 

 

 
 

Fig. 3. Initial factor loadings plot as a network of edges (i.e., links) between nodes (i.e., variables) 
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The graph in Fig. 3 is a way of showing the relationships between initial factors and variables as a network of 
line segments. It arranges the nodes in a way that locates more highly correlated variables closer to one another. 
This graph shows the strength and sign of the correlations between factors and variables. The sign of the 
correlations are indicated by color. The blue color indicates those variables that correlated positively with 
factors and the darkred color indicates those that are negatively correlated with factors (see Table 5). The 
strength or thickness of the line increases as correlation value tends to ±1. The legend calibrated in different 
colors shows the point where the correlation value falls and this can be traced using the network line color. 
 
Table 6 depicted the result of rotated factor loadings which was obtained from the rotation of the initial factor 
loadings (see Table 5) using varimax rotation technique. The application of the varimax rotation technique had 
optimized the initial factor loadings and this was done to find factors that are easier to interpret. Factor loadings 
are the correlations between variables and common factors [65]. To explain each of the common factors, 
examine the magnitude and direction of the correlation between the original variable and the corresponding 
factor. The acceptance of the correlation between a variable and common factor depends on the absolute value 
of the correlation. The larger the absolute value of the correlation, the more important the corresponding 
variable is in determining the common factor. In this analysis, the absolute value of the correlation greater than 
or equal to 0.5 is accepted and it implies that the correlation between the common factor and variable is 
significant. After varimax rotation of the initial factor axes, three factors were extracted which accounted for 
71.63% of the total variance of the original 11 variables (see Table 4). From the result in Table 6, factor pattern 
correlations of the rotated factors showed the relative contribution of each variable (i.e., development factor) to 
a particular factor. The bold marked loads indicate the highest correlation between variables and corresponding 
factors. The first rotated factor explained 32.08% of the variance in the dataset (see rotation sums of squared 
loadings in Table 4). This first rotated factor is strongly correlated with five of the original variables; 
Healthcare, Crime, Education, Recreation and Economy with correlation values of 0.93, 0.56, 0.80, 0.78, and 
0.70 respectively (Table 6). This suggests that the five variables vary together, that is, if one of these variables 
increases, then the remaining ones tends to increase as well. Therefore, the first rotated factor can be viewed as a 
measure of Healthcare, Crime, Education, Recreation and Economy since they have high correlation values. The 
second rotated factor explained 24.56% of the variance in the dataset. This second rotated factor is highly 
associated with Housing, Transportation, and Arts with correlation values 0.77, 0.79, and 0.89 respectively. 
Furthermore, the second rotated factor primary measures Housing, Transportation, and Arts and it implies that 
the second rotated factor increases with them. The third rotated factor explained 14.99% of the variance in the 
dataset. The third rotated factor highly associated with three of the original variables, namely; Borehole water, 
Energy, and Climate with correlation values of 0.64, -0.84, and 0.69 respectively. This suggests that the five 
variables vary together but in this case, as Borehole water and Climate increase with the third factor, Energy 
decreases with it. Hence, the third rotated factor can be viewed as a measure of Borehole water, Energy, and 
Climate. 

 
Table 6. Rotated common factor loadings matrix and its communality, specific variance and complexity 

(Factor Loadings < 0.50 are Excluded) 
 
 Variable  Rotated factor (RF) loadings ����� Communalities 

  �ℎ��
�� 

Specific 
variances 
  (��) 

Complexities 

  �Ƈ��� RF1 RF2 RF3 

Housing -0.3117 0.7688 0.1247 0.7037 0.2963 1.3794 
HealthCare 0.9280 0.0684 -0.1083 0.8776 0.1224 1.0383 
Crime 0.5598 0.0168 -0.0310 0.3146 0.6854 1.0079 
Transportation -0.3031 0.7890 0.1302 0.7314 0.2686 1.3498 
Education 0.8025 -0.4032 -0.0849 0.8138 0.1862 1.5010 
Arts 0.1302 0.8966 0.0306 0.8217 0.1783 1.0446 
Recreation 0.7840 -0.4490 -0.0908 0.8245 0.1755 1.6243 
Economy 0.7029 -0.2841 0.0216 0.5752 0.4248 1.3205 
Borehole Water -0.2320 0.3030 0.6350 0.5488 0.4512 1.7321 
Energy -0.3575 0.2129 -0.8368 0.8733 0.1267 1.4995 
Climate -0.4628 0.3116 0.6952 0.7946 0.2054 2.1853 

 
The communalities are the proportion of variance that each variable has in common with other variables. If 
communality of a variable is high, it means that the extracted factors explained a big proportion of the variables 
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variance. The range of communality values from 0.3 – 1 indicates that the data are conformable to factor 
analysis. As can see from column 3 of Table 6, all the communalities ranging from 0.31 – 0.88 depicted that 
factor model is a good model (see communality in section 4).  Column 4 of Table 6 shows specific variance 
which is the variance that is specific to a particular variable, that is, variance explained by a particular variable. 
From the results in Table 6, we noticed that the communalities and specific variances of the rotated factors are 
the same with the communalities and specific variances of the initial factors in Table 5. This means that rotation 
of factors does not affect the proportion of variance that each variable has in common with other variables and 
the variance that is specific to a particular variable.  
 
Complexities in column 5 of Table 6 examine the number of factors on which a variable has moderate or high 
loadings. This complexity is reduced by carrying out rotational computation on factors, that is, by rotating 
factors. For instance, the rotated complexity for Housing in Table 6 is 1.38 while the initial complexity for 
Housing in Table 5 is 1.68; rotated complexity for Healthcare is 1.04 while initial complexity for Healthcare is 
2.27 and so on. 
 
The graph in Fig. 4 is a way of showing the relationships between rotated factors and variables as a network of 
line segments. It arranges the nodes in a way that locates more highly correlated variables closer to one another. 
This graph shows the strength and sign of the correlations between rotated factors and variables. The sign of the 
correlations are indicated by color. The blue color indicates those variables that correlated positively with 
factors and the darkred color indicates those that are negatively correlated with factors (see Table 6). The 
strength or thickness of the line increases as correlation value tends to ±1. The legend calibrated in different 
colors showed the point where the correlation value falls and this can be traced using the network line color. 
 
 

 
 

Fig. 4. Rotated factor loadings plot as a network of links (i.e., edges) between variables (i.e., nodes) 
 
The 3D plot in Fig. 5 is known as factor loadings plot in 3-dimensional space. The values used in this plot are 
the values obtained in Table 6. These values are the correlation values between the factors and original 
variables. Values closest to ±1 represent the strongest relationships and with zero being uncorrelated. This    
Fig. 5 shows the three rotated factors in 3-dimensional space pointing the correlations between each variable and 
corresponding rotated factor. The percentages 32.08%, 24.56% and 14.99% in rotated factor 1, 2 and 3 
respectively are the percentage of variance in the set of variables accounted for by the factors (see Table 4). The 
dashed red circles in Fig. 5 depicted how the first rotated factor (RF 1) in Table 6 put Healthcare, Crime, 
Education, Recreation and Economy in the same group; the second rotated factor (RF 2) put Housing, 
Transportation and Arts in the same group; the third rotated factor (RF 3) put Borehole water, Energy and 
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Climate in the same group. The variables in each group imply that they are more related to each other and being 
influenced by the same factor than other variables in another group. The grouping of variables using 3D plot in 
this Fig. 5 showed that rotated factors are easier to interpret than unrotated/initial factors (see Table 5) which we 
could not group their variables using 3D plot. The legend calibrated in different colors showed the point where 
the correlation value falls and this can be traced using the variable color as shown in the 3D space.  
 

 
 

Fig. 5. 3D plot for rotated factor loadings of rotated factor 1, rotated factor 2 and rotated factor 3 
 

5.2 Multiple linear regression analysis result 
 
In this section, we presented results of multiple regression analysis computed using standardized values, 
development scores (DS) (i.e., PC scores) and rotated factor scores (RFS). Development scores were obtained 
through the multiplication of standard values of the considered variables by PC matrix (see Table 7). Rotated 
factor scores were obtained through the multiplication of standard values of the considered variables by weight 
of rotated factor matrix, that is, rotated factor score coefficient matrix (see Table 8). 
 
After development scores and factor scores were obtained, the first development scores (DS 1) in Table 7 was 
used as a dependent variable and the three rotated factor scores (RFS 1, RFS 2, and RFS 3) in Table 8 were used 
as independent variables; then we obtained the results of multiple regression analysis as shown in Table 9. 
Moreover, the DS 1 was used as a dependent variable because it explained more variance than DS 2 and DS 3, 
that is, it accounts for as much variation in the data as possible more than DS 2 and DS 3. The use of 
interdependent explanatory variables should be treated with caution, since multicollinearity has been shown to 
be associated with unstable estimates of regression coefficients rendering the estimation of unique effects of 
these predictors impossible [66]. This justifies the use of factor scores for prediction. These factors are 
orthogonal to each other if rotated using varimax technique and are more reliable in development estimation. 
From the results in Table 9, when probabilities were taken into consideration, the regressions of DS 1 on RFS 1 
(P<0.001), RFS 2 (P<0.001) and RFS 3 (P<0.001) were statistically significant. The three rotated factors had a 
positive effect on development factors (DS 1) and this means that the considered development factors increased 
with increasing score values of the three rotated factors. The adequacy of the regression model was examined 
using multiple coefficient of determination, ��. The result showed �� was 99% and this means that 99% of 
variation in development factors (DS 1) was explained by all the three rotated factors. Tolerance and VIF were 
used to check if multicollinearity exists among the independent variables (RFS 1, RFS 2 and RFS 3). The result 
showed Tolerance and VIF values were reduced to 1 which is the VIF threshold value and it exceeded the 
threshold value of Tolerance [38, 37]. This result showed that multicollinearity problems were eliminated. 
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Table 7. Principal components matrix and development scores (i.e., PC scores) 
 
 
 
Variable 

Principal Component (PC) Development Scores (DS) 
(i.e., Principal Component Scores) 

PC1 PC2 PC3 Sample No. DS 1 DS 2 DS 3 
Housing 0.3317 -0.2595 0.213 1 2.3634 -0.3861 -0.7919 
HealthCare -0.3205 -0.4233 0.246 2 2.1227 -0.8233 -0.3183 
Crime -0.1965 -0.2578 0.1136 3 2.5747 -1.3720 -1.2962 
Transportation 0.3348 -0.2751 0.2196 4 2.2134 -0.0116 -1.6206 
Education -0.402 -0.1557 -0.0017 5 3.1471 -7.0564 3.3893 
Arts 0.2008 -0.4879 0.4025 . . . . 
Recreation -0.4085 -0.1236 -0.021 . . . . 
Economy -0.3237 -0.207 -0.0368 . . . . 
Borehole Water 0.2278 -0.2873 -0.3382 246 1.7412 0.3234 -1.2541 
Energy 0.1009 0.4067 0.6213 247 1.6504 0.6263 -1.5720 
Climate 0.3178 -0.2073 -0.4109 248 2.0293 -2.4522 0.5250 

249 2.5406 -0.3654 -1.2016 
250 1.5601 -0.1414 -0.6498 

 

Table 8. Rotated factor score coefficient matrix and factor score 
 

 Variable 

Weight of Rotated Factor (WRF) Rotated Factor Scores (RFS) Absolute 
value of 
Development 
Scores WRF 1 WRF 2 WRF 3 

Sample 
No. RFS 1 RFS 2 RFS 3 

Housing 0.0366 0.3061 -0.0097 1 -0.7745 0.4642 0.9399 0.3893 

HealthCare 0.3491 0.2194 -0.0317 2 -0.4127 0.8143 0.7642 0.8287 

Crime 0.2076 0.1169 0.0057 3 -0.463 0.7503 1.7075 1.3806 

Transportation 0.0438 0.3171 -0.0077 4 -1.0223 -0.1231 1.3477 0.0128 

Education 0.215 -0.038 0.0239 5 2.7088 5.645 0.8124 7.0955 

Arts 0.2187 0.4615 -0.0619 . . . . . 

Recreation 0.1993 -0.0634 0.0236 . . . . . 

Economy 0.2061 -0.0089 0.0766 . . . . . 

Borehole Water 0.0031 0.0424 0.3727 246 -0.957 -0.2412 0.9117 0.3242 

Energy -0.1326 0.1193 -0.5841 247 -1.1151 -0.5491 1.0007 0.6287 

Climate -0.0773 -0.0029 0.3998 248 0.5117 1.922 0.8277 2.4663 

249 -0.9088 0.3182 1.2328 0.3686 

250 -0.5837 0.1967 0.6626 0.1429 

 

Table 9. Results of multiple regression analysis using first development scores (DS 1) as dependent 
variable and rotated factor scores (RFS 1, RFS 2, and RFS 3) as independent variables 

 

Model         Collinearity Statistics 
Estimate Std. Error t value Pr(>|t|)     Tolerance VIF 

(Intercept) -4.83e-07 1.93e-04 -0.209 0.835   
Rotated Factor Score1 7.88e-01 1.93e-04 8759.336 <2e-16 ** 1.0 1.0 
Rotated Factor Score2 7.77e-01 1.93e-04 6734.898 <2e-16 ** 1.0 1.0 
Rotated Factor Score3 6.77e-01 1.93e-04 2469.965 <2e-16 ** 1.0 1.0 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
Residual standard error: 0.003049 on 246 degrees of freedom 
Multiple R-squared:  0.99,  Adjusted R-squared:  0.98  
F-statistic: 4.273e+07 on 3 and 246 DF,  p-value: < 2.2e-16 
Relationship between dependent variable (DS 1) and independent variables (RFS 1, RFS 2, and RFS 3)    
Variable Zero Order value Partial value Part value 
Rotated Factor Score 1 0.774 1.000 0.774 
Rotated Factor Score 2 0.595 1.000 0.595 
Rotated Factor Score 3 0.218 1.000 0.218 
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Y� = −0.00000048 + 0.79(RFS	1)+ 0.78(RFS	2)+ 0.68(RFS	3)																																																									(22) 
 
Equation (22) is a fitted multiple regression model for prediction of development scores.  
 
Column 4 of Table 8 showed the absolute value of development scores. This development scores were used to 
evaluate the considered cities for recommendation and they were obtained using the fitted multiple regression 
model in equation (22). From the results in this Column 4 of Table 8, we noticed that the seven cities that have 
highest development scores are Ikeja, Badagry, Calabar, Ibadan, Port Harcourt, Bonny and Obudu with 
development scores of 7.1, 5.81, 3.45, 3.35, 3.2, 3.15 and 3.06 respectively. Moreover, Table 9 showed 
relationship between dependent variable (DS 1) and independent variables (RFS 1, RFS 2 and RFS 3) in terms 
of zero order, partial and part values. Zero order value is Pearson correlation coefficient between dependent 
variable and independent variables. The result showed that dependent variable (DS 1) correlated strongly with 
RFS 1 (r = 0.77) and RFS 2 (r = 0.60) and weakly correlated with RFS 3 (r = 0.22).  Partial value shows how 
much of the variance of dependent variable which is not estimated by the other independent variables in the 
model. In other words, it is the variance estimated by a specific variable. As can see, the three factors have equal 
partial values of 1. Part value shows how much multiple coefficient of determination ��  will decrease if a 
particular independent variable is removed from the model. It is also known as a unique contribution of 
independent variables. The result shows that �� decreases if 0.77 of rotated factor score 1 is removed, 0.60 of 
rotated factor score 2 is removed and 0.22 of rotated factor score 3 is removed. 
 

6 Conclusion 
 
In this paper, the relationships among some development factors in Southern Nigeria were explored using 
principal component factor analysis method. In our analysis, the results showed that three new factors were 
successfully constructed and assigned as the common factors that influence sustainable development in Southern 
Nigeria. The three new factors showed how the 11 considered development factors related to each other to 
influence development by putting them in groups. The rotated first factor (RF 1) in Table 6 put Healthcare, 
Crime, Education, Recreation and Economy in the same group and this means that they are more related to each 
other than other variables and being influenced by the same factor. The second rotated factor (RF 2) put 
Housing, Transportation and Arts in the same group and this means that they are influenced by the same factor 
and more related to each other. The third rotated factor (RF 3) put Borehole water, Energy and Climate in the 
same group and also means that they are influenced by the same factor and more related to each other. The 
communality values obtained ranging from 0.31 – 0.88 exceeded threshold value and it showed that the 
common factor model was a good one. The results were extended to multiple regression analysis in order to fit a 
model for development scores prediction. Thus, The coefficient of determination,��, for the multiple regression 
model is 99% and this showed that the model is adequate to evaluate the areas or cities in the three geopolitical 
zones in Southern Nigeria. The higher the estimated development scores, the better a city. The results of the 
regression showed that the use of the three new rotated factors as independent variables helped to eliminate 
multicollinearity problems. Development scores increased with increasing score values of rotated factors with 
positive effect. This implies that development scores increased with increasing Healthcare, Crime, Education, 
Recreation and Economy in rotated factor 1 (RFS 1). Also, development score values increased with increasing 
Housing, Transportation and Arts in rotated factor 2 (RFS 2) and It increased with increasing Borehole water 
and Climate and decreasing Energy in rotated factor 3 (RFS 3). The development scores obtained from the fitted 
multiple regression model showed that Ikeja, Badagry, Calabar, Ibadan, Port Harcourt, Bonny and Obudu have 
the highest scores among others and they are regarded as the best cities. 
 
In summary, this study enabled us to identify three common factors that explained the interrelationships among 
some development factors in Southern Nigeria and also fitted multiple regression model that was used to 
estimate areas or cities development scores. This development scores were used to identify the best areas or 
cities in southern Nigeria. 
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APPENDIX 
 

R codes for principal component method of factor analysis 
 
#"setwd ()" is a function uses to set working directory 
#setwd("C:/Users/C.JAY NATECH/Documents/FACTOR ANALYSIS") 
#read.csv is a function uses to import data from any spreadsheet environment to R environment 
Places.Data <- read.csv("Places Data.csv", sep = ",", header = TRUE); Places.Data #To print/call 
#"Places.Data" 
# computation of correlation using pearson correlation method 
#library(corrplot) loads "corrplot 0.84" package to create corrplot. 
library(corrplot) 
corrplot.mixed(cor(Places.Data), number.cex = 1.2,tl.col="black", tl.cex=0.8, lower.col = "black") 
#library(MVN) loads "MVN" package which handles multivariate normality test 
library(MVN) 
# create univariate histograms for checking normality 
hist.plot <- mvn(data = Places.Data, mvnTest = "royston", univariatePlot = "histogram") 
#Normality test on the complete data 
#Shapiro-Wilk Normality test 
Normality_result <- mvn(data = Places.Data, mvnTest = "royston", univariateTest = "SW", desc = TRUE) 
Normality_result$univariateNormality 
write.csv(Normality_result$univariateNormality, file = "Shapiro-Wilk Test Result.csv")#To save/export 
#"Normality_result$univariateNormality" from R to MS-Excel 
# library(FactoMineR) loads "FactoMineR" package. 
#This package carries out PCA method of factor analysis using "PCA ()" function 
library(FactoMineR) 
unrot.Places.Factors <- PCA(Places.Data, scale.unit = TRUE, graph = FALSE) 
# library(factoextra) loads "factoextra" package.factoextra" is a package uses to extract PCA results #from 
"FactoMineR" package. It plots different diagram/graph using results extracted from the same #"FactoMineR" 
package.  
library(ggplot2)#"ggplot2" is a package that helps "factoextra" in creation of diagrams 
library(factoextra) 
## matrix with eigenvalues extracted from "FactoMineR" package using Factoextra package 
Factors.eig.val <- get_eigenvalue(unrot.Places.Factors) 
print(Factors.eig.val, digit=4)# digit=4 is used to make the result in 4 s.f 
write.csv(Factors.eig.val, file = "Eigenvalue Result.csv")#To export "Factors.eig.val" from R to MS-Excel 
# Visualization of eigenvalues/variances 
fviz_screeplot(unrot.Places.Factors, addlabels = TRUE, ylim = c(0, 46), xlim=c(0, 11), xlab = "Component 
Number", main = " Scree Plot") 
## matrix of factor loadings computed using "PCA ()" function in "FactoMineR" package loaded earlier 
# unrot.Factor.Loadings is a variable that holds data.frame (i.e., table format) of matrix of factor loadings  
unrot.Factor.Loadings <-data.frame(round(unrot.Places.Factors$var$cor[,1:3],4)) 
names(unrot.Factor.Loadings) <- c("F1", "F2", "F3")  #renaming of the columns of unrot.Factor.Loadings"   
 unrot.Factor.Loadings #To print "unrot.Factor.Loadings" 
#library(psych) loads "psych" package. 
##"psych" package uses "principal ()" function to carry out PCA method of factor analysis. 
##"principal ()" function uses correlation matrix by default and covariance matrix when "covar=TRUE" is 
#stated 
library(psych) 
#unrot.Place.factor is a variable that holds results computed by "principal ()" function.  
unrot.Place.factor <- principal(Places.Data, nfactors = 3, scores=TRUE, normalize=TRUE, 
                                oblique.scores =FALSE,rotate = 'none', cor = "cor", method = "wls", fm="pc") 
communalities <- apply(unrot.Place.factor$loadings^2,1,sum) # communality 
specific.variance <- 1 - apply(unrot.Place.factor$loadings^2,1,sum) # uniqueness 
complexity <- (apply(unrot.Place.factor$loadings^2,1,sum))^2/apply(unrot.Place.factor$loadings^4,1,sum) 
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unrot.Facto.Load.Variances <- data.frame(unrot.Factor.Loadings, communalities, specific.variance, complexity) 
#data.frame     
print(unrot.Facto.Load.Variances, digits = 4) #To print data frame "unrot.Facto.Load.Variances" with 4s.f 
write.csv(unrot.Facto.Load.Variances, file = "unrotated Factor Loading and Variances.csv") 
#rot.Place.factor is a variable that holds results computed by "principal ()" function.  
rot.Place.factor <- principal(Places.Data, nfactors = 3, scores=TRUE, normalize=TRUE,                          
oblique.scores =FALSE,rotate = 'varimax', cor = "cor", method = "wls") 
rot.Place.factor  #To print rotated factor loadings in "rot.Place.factor" from "principal ()" function 
win.graph() 
#library(qgrap) loads "qgraph" package. This package is use to plot qgraph which shows the lines of 
#correlations 
library(qgraph) 
rot.Factor.Loadings_qgraph <- function(loadings_in, title) { 
  ld <- loadings(loadings_in) 
  qg_factor <- qgraph(ld, title=title, 
layout = "spring", node.height=1.5, node.width=1.5,label.cex=1.5, posCol = "darkgreen", 
negCol = "darkmagenta", arrows = FALSE,labels=attr(ld, "dimnames")[[1]]) 
  qgraph(qg_factor, title=title, 
         posCol = "darkblue", negCol = "darkred", arrows = FALSE, node.height=1.5, node.width=1.5, 
vTrans=255, edge.width=1, label.cex=1.5, width=2, height=2, normalize=TRUE) 
} 
rot.Factor.Loadings_qgraph(rot.Place.factor, "  ") #To print the qgraph of factor loadings matrix from the 
#function "rot.Factor.Loadings_qgraph". Here this factor loadings matrix is computed using #"principal ()" 
function in "psych" package 
# rot.Factor.Loadings is a variable that holds data.frame (i.e., table format) of matrix of factor loadings  
rot.Factor.Loadings <-data.frame(rot.Place.factor$loadings[,1:3]) 
names(rot.Factor.Loadings) <- c("RF1", "RF2", "RF3")  #renaming of the columns of # "unrot.Factor.Loadings"  
table 
rot.Factor.Loadings #To print "unrot.Factor.Loadings" communalities < 
apply(rot.Place.factor$loadings^2,1,sum) # communality 
specific.variance <- 1 - apply(rot.Place.factor$loadings^2,1,sum) # uniqueness 
complexity <- (apply(rot.Place.factor$loadings^2,1,sum))^2/apply(rot.Place.factor$loadings^4,1,sum) 
rot.Facto.Load.Variances <- data.frame(rot.Factor.Loadings,communalities, specific.variance,complexity)       
print(rot.Facto.Load.Variances, digits = 4)#To print data frame "unrot.Facto.Load.Variances" with 4 s.f 
write.csv(rot.Facto.Load.Variances, file = "Rotated Factor Loading and Variances.csv")#To save/export 
#"unrot.Facto.Load.Variance" from R to MS-Excel 
win.graph() 
#libray("plot3D") loads "plot3D" package. This package is used to draw 3D plot 
library("plot3D") 
with(rot.Factor.Loadings, scatter3D(rot.Factor.Loadings$RF1, rot.Factor.Loadings$RF2,  
                                    rot.Factor.Loadings$RF3, pch = 10, 
                                    xlab = "Rotated factor1 (32.081%)", ylab = "Rotated factor2 (24.560%) ",  
                                    zlab = "Rotated factor3 (14.989%) ", 
                                    labels = rownames(rot.Factor.Loadings), colvar = rot.Factor.Loadings$FR1,  
                                    theta = 110, phi = 20,col = gg.col(10), 
                                    main = "Rotated factor loadings", cex = 1.5, colkey = TRUE, 
                                    bty = "g", ticktype = "detailed", d = 10, 
                                    clab = c("Correlation","Values","(-1 < r < 1 )"), adj = 0.5, font = 2)) 
# Add text 
text3D(rot.Factor.Loadings$RF1, rot.Factor.Loadings$RF2, rot.Factor.Loadings$RF3, 
       labels = rownames(rot.Factor.Loadings), add = TRUE, colkey = FALSE, cex = 1,  
       colvar = rot.Factor.Loadings$RF1, col = gg.col(10), 
       clab = c("Correlation","Values","(-1 < r < 1 )"), adj = -0.2, font = 2) 
 
# Add points 
with(rot.Factor.Loadings, scatter3D(rot.Factor.Loadings$RF1, rot.Factor.Loadings$RF2, 
                                    rot.Factor.Loadings$RF3 - 0.05,  
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                                    colvar = rot.Factor.Loadings$RF1, col = gg.col(10), 
                                    type = "h", pch = " ",add = TRUE)) 
#rot.facto.weight is a variable that holds the weights of rotated factor 
rot.facto.weight <- rot.Place.factor$weights 
rot.facto.weight 
write.csv(rot.facto.weight, file = "weight of rotated factors.csv") #To save "rot.facto.weight" into Excel 
#Factor.Score is a variable that holds rotated factor scores 
Factor.Score <- rot.Place.factor$scores 
 
Factor.Score 
 
write.csv(Factor.Score, file = "rotated factor scores.csv") 
#############################   REGRESSION ANALYSIS    ############################### 
#fitting multiple regression using development score (i.e., Pc Score 1) as dependent variable and factor    
#scores as independent variable 
DevScores_FactorScores <-read.csv("Dev Scores and Factor Scores.csv", sep = ",", header = TRUE) 
head(DevScores_FactorScores) #To print/call "Factor and PC Scores.csv" 
PCScores_FactorScores <-read.csv("PC SCORE AND FACTOR SCORES.csv", sep = ",", header = TRUE) 
head(PCScores_FactorScores) #To print/call "Factor and PC Scores.csv" 
#Reg_Dev_Factor_Scores is a variable that holds regression results 
Reg_Dev_Factor_Scores <- lm(DSScore ~ FactorScore1 + FactorScore2 + FactorScore3, 
data=PCScores_FactorScores) 
summary(Reg_Dev_Factor_Scores) 
#library(olsrr) is a package used to compute Tolerance and VIF 
library(olsrr) 
ols_vif_tol(Reg_Dev_Factor_Scores) 
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